

Home Search Collections Journals About Contact us My IOPscience

Phase stability and pressure-induced semiconductor to metal transition in crystalline GeSe₂

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 9589

(http://iopscience.iop.org/0953-8984/14/41/314)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 18/05/2010 at 15:10

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 14 (2002) 9589-9600

Phase stability and pressure-induced semiconductor to metal transition in crystalline GeSe₂

M Fuentes-Cabrera, H Wang and Otto F Sankey

Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA

Received 17 July 2002 Published 4 October 2002 Online at stacks.iop.org/JPhysCM/14/9589

Abstract

The structural and electronic properties of crystalline $GeSe_2$ are studied using *ab initio* density functional theory. $GeSe_2$ exists in a variety of phases; here eight phases, six previously synthesized and two hypothetical, are investigated within the local density approximation and the generalized gradient approximation (GGA). The results show that the GGA correctly describes the energetics of the $GeSe_2$ even with variations in charge density of layer $GeSe_2$ structures. The stability of the phases studied is discussed, and the possible phase transitions under pressure are predicted and compared to experiment. The electronic structure of $GeSe_2$ confirms, for the first time, that the high-pressure CdI_2 -type phase is metallic which may produce the semiconductor to metal transition in the $GeSe_2$ system under pressure.

1. Introduction

Crystalline and amorphous germanium diselenide semiconductors have many interesting properties, as well as many potential applications such as in optoelectronic and IR optical devices, optical storage and photosensitive material and solar cells. Numerous studies, utilizing both experimental and theoretical approaches, have been carried out to better understand the pressure-induced structural and electronic properties of $GeSe_2$ [1–11]. There are three stable crystalline phases of GeSe₂ reported in the literature. Orthorhombic α -GeSe₂ (*Pmmm* or *Pmn*) is the low-temperature modification of GeSe₂, and has a distorted layered structure of CdI₂, where the cations are octahedrally coordinated [12, 13]. Layered β -GeSe₂ (P2₁/c) is isotypic with the high-temperature modification of the sulfur compound GeS_2 . Here the $GeSe_4$ tetrahedra are connected via corners into chains along the a axis and by edge-sharing Ge_2Se_8 double tetrahedra along the b axis [14–18]. The third phase γ -GeSe₂ has a structure related to hexagonal $SnSe_2$ of the CdI₂ type [19]. The CdI₂-type structure has a hexagonal symmetry with a layer structure. The stability of different polymorphs of GeSe₂ has been discussed by Stølen et al [20]. Of course, GeSe₂ forms amorphous networks as well, which have been studied both experimentally [2] and theoretically [11]. GeSe₂ has a remarkable complexity with a variety of structural forms. This paper will focus only on the crystalline phases.

0953-8984/02/419589+12\$30.00 © 2002 IOP Publishing Ltd Printed in the UK

9589

Pressure-induced phase transitions are an attractive topic and active field. High pressure is able to produce new structures as a result of new chemistry that occurs from mild or even extreme changes in the bonding. Pressure-induced phase transitions in GeSe₂, especially the semiconductor-metal transition, are not well understood. Prasad *et al* [10] studied Ge_xSe_{100-x} $(0 \le x \le 40)$ glasses up to 14 GPa and temperatures of 77–298 K. They observed a discontinuous glassy semiconductor to metallic phase transition. This shows that the electronic properties of the chalcogenide glass GeSe₂ can be permanently changed by applying pressure. Several high-pressure experiments have been conducted recently [4, 5] in crystalline GeSe₂ to unravel the mechanism of this transition. It was found that GeSe₂ crystallizes in the CdI₂-type phase at around 7 GPa and it was suggested that this phase is metallic. The mechanism of the pressure-induced semiconductor to metal transition was then explained by a structural phase transition to a CdI₂-like phase.

In this study, we investigate the structural and electronic properties of eight phases of GeSe₂ with *ab initio* density functional techniques [21, 22]. The *ab initio* method is based on pseudo-potential-density functional theory within the local density approximation (LDA) and the generalized gradient approximation (GGA). A plane-wave basis set is used and convergence is enhanced using ultrasoft pseudo-potentials [22, 23]. The integrations over the Brillouin zone were carried out by the Monkhorst–Pack scheme [24]. For the LDA we use the Ceperly–Alder expression [25, 26] while the Perdew–Wang expression [27] was used for the GGA.

In section 2 of this paper, we describe the structural properties of the phases studied and discuss the optimized structures from geometry optimization using the LDA and GGA. We find that the LDA results for the structural parameters are in good agreement with experiments, where the GGA results are in moderate agreement. In section 3, we investigate the energetics and phase transition properties, and predict a sequence of phase transitions for the GeSe₂ system. Here we find that the GGA gives the best agreement with experiments. The electronic properties are studied in section 4 and our electronic structures of GeSe₂ confirm that the CdI₂-type phase is metallic. Finally we conclude in section 5.

2. Structural properties and relaxation results

GeSe₂ has a remarkable variety of crystalline structures. We will systematically study several of these structures theoretically to determine their electronic properties, energetics, equations of state and possible high-pressure phase transitions. Table 1 contains a list, and a brief description, of several existing or potential phases of crystalline germanium selenide. All of them, except Ge₄Se₉, are studied in this work. The theoretical investigation of the structural and electronic properties of Ge₄Se₉ will be reported in future work, and is listed here only for completeness.

Among the phases studied in this work, six have been examined experimentally and two are hypothetical porous phases. The two hypothetical porous phases are being investigated for comparative purposes, and to assess the likelihood of future synthesis. We now give a brief description of the eight studied phases. Figures 1(a)-(h) show their crystalline structure.

GeSe₂ crystallizes in the monoclinic structure β -GeSe₂ ($P2_1/c$), and is experimentally the most stable [17] among the phases of GeSe₂ listed in table 1. Figure 1(a) shows its structure, and the fundamental building block consists of a GeSe₄ tetrahedron which is shown by figure 1(i). β -GeSe₂ ($P2_1/c$) is a two-dimensional structure with layers made up of GeSe₄ tetrahedra. Within each layer, one half of the GeSe₄ tetrahedra are linked at the corners through the Se atoms, and the other half are linked by their edges. The next structure is HgI₂ ($P4_2/nmc$) which is shown in figure 1(b). It is an intermediate phase between β -GeSe₂ ($P2_1/c$) and cristobalite-like $I\bar{4}2d$ structures [30]. Layers made up of GeSe₄ tetrahedra are linked by

Figure 1. (a)–(h) Structures of the GeSe₂ studied. (i)–(k) The building blocks of the structures studied. (a) β ; (b) HgI₂ type; (c) T₁-cristobalite; (d) $I\bar{4}$; (e) $P\bar{4}$; (f) CdI₂ type; (g) T₂-cristobalite; (h) δ and (i) tetrahedron T₁ = GeSe₄; (j) octahedron GeSe₆; (k) supertetrahedron T₂ = Ge₄Se₁₀. (This figure is in colour only in the electronic version)

Phase	Space group	Properties
β -phase [17]	$P2_{1}/c$	2D material with layers made up of $T_1 = GeSe_4$ tetrahedral units; 50% of GeSe ₄ are connected by the corners and 50% by the edges.
HgI ₂ type [28]	$P4_2/nmc$	2D material with layers made up of T_1 units. All of T_1 are connected by the corners.
T ₁ -cristobalite [5, 29]	I42d	3D material made up of T_1 units connected by the corners.
I4-phase [4]	IĀ	3D material made up of T_1 units connected by the corners.
P4-phase [4]	ΡĀ	3D material made up of T_1 units connected by the corners.
CdI ₂ type [29]	$P\bar{3}m1$	2D material with layers made up of $GeSe_6$ octahedral units; $GeSe_6$ are connected by the corners and edges.
$T_2\text{-}cristobalite^\dagger$	I42d	3D hypothetical microporous material made up of $T_2 = Ge_4Se_{10}$ supertetrahedral units connected by the corners.
δ -phase [†]	I4 ₁ /acd	3D hypothetical microporous material made up of two interpenetrating Ge_4Se_8 . The T_2s are connected by the corners.
Ge ₄ Se ₉ [3]	$Pca2_1$	2D material made up of T_1 units. All T_1 s are connected by the corners.

Table 1. Phases and descriptions of germanium selenide studied. A dagger $(^\dagger)$ indicates a hypothetical phase.

the corners to form a two-dimensional-like structure. The structure of T_1 -cristobalite (the T_1 designation is defined below) is shown in figure 1(c). It is a three-dimensional structure and is made up of $GeSe_4$ tetrahedra linked to each other by sharing the Se atoms at the corners. The arrangement of the $GeSe_4$ tetrahedra coincides with the arrangement of the SiO_4 tetrahedra in T_1 cristobalite SiO₂; hence we refer to this GeSe₂ structure as T_1 -cristobalite. The other two three-dimensional crystalline GeSe₂ structures in table 1 are the high-pressure phases $I\bar{4}$ and $P\bar{4}$ observed by Grzechnik *et al* [4]. They are shown in figures 1(d) and (e), respectively. Both $I\bar{4}$ and $P\bar{4}$ variants are a slight distortion of $I\bar{4}2d$; the distortion consists of small displacements of the Se atoms in the y and z directions. In the ideal I42d case, the y and z atomic coordinates for the symmetry-equivalent Se atoms are fixed at 1/4 and 1/8. Displacements, lower the symmetry of the lattice, produce a nonequivalency of the Ge and/or Se atoms. This is analogous to the SiO₂ case where either $I\bar{4}$ or $P\bar{4}$ structures are produced by distortions of the $I\overline{4}2d$ cristobalite [31, 32]. The CdI₂ ($P\overline{3}m1$) two-dimensional structure differs from other two-dimensional structures studied in this work. Its building block is the GeSe₆ octahedra as shown in figure 1(j). The octahedra in CdI₂ are arranged in layers linked by the edges and the corners, as seen in figure 1(f).

The investigation of hypothetical porous phases of $GeSe_2$ is motivated by the great interest in the synthesis of open framework materials with large pores. Materials with large pores such as zeolites are used in 'oil cracking', and may even act as antidot semiconductors. An antidot is a subnanometre vacancy that can trap electrons from the surrounding material [33]. Large-pore semiconductors or insulators impact the fields of nanotechnology, molecular sieve science and optoelectronics [34–38].

It has been proposed [35] that nanometre-scale pores within a new class of porous materials, know as supertetrahedral solids, can trap electrons in an antidot. A supertetrahedron is a

tetrahedron built of fundamental tetrahedra. A T₁-tetrahedron (GeS₄) is a simple fundamental tetrahedron and is shown in figure 1(i). A T₂-supertetrahedron (Ge₄S₁₀) is built of four fundamental tetrahedra (Ge₂S₄) sharing corners. The supertetrahedron itself is linked to other supertetrahedra to form a supertetrahedral solid. This technique is called decoration [40], in which a more complex solid is built by replacing simple units with more complex ones. Applying this technique here, one starts from a tetrahedral structure and theoretically replaces each tetrahedron by a supertetrahedron. For example, consider the GeSe₂ tetrahedral solid made up of corner-linked GeSe₄ tetrahedra in the cristobalite structure ($I\bar{4}2d$). It can be decorated by theoretically replacing each GeSe₄ by the supertetrahedron Ge_{t_n}Se_{t_(n+1). As a result, one obtains the supertetrahedral solid Ge_{t_n}Se_{t_(n+1)-2}, which we call T_n-cristobalite. The original starting structure is simply T₁-cristobalite. Because the size of the pores of T_n-cristobalite increases rapidly with *n*, the decoration technique provides a recipe for creating materials with very large pores, making this technique an important tool to guide synthesis.}

GeSe₂ in the T₂-cristobalite structure is shown in figure 1(g). It is made up of T₂ (Ge₄Se₁₀, figure 1(k)) supertetrahedra connected through the Se atoms on the corners. The structure of δ -GeSe₂ illustrated by figure 1(h) is made up of two interpenetrating T₂-cristobalite frameworks, which is analogous to that of δ -GeS₂, which has been synthesized by MacLachlan *et al* [39].

Earlier theoretical work [35] found that the pores of supertetrahedral (T₃) $In_{10}S_{18}^{b-}$ contain particle-in-a-box (PIAB) 'deep-level' electron states within the bandgap. Here we investigate whether the pores of supertetrahedral GeSe₂ materials contain PIAB 'deep-level' electron states as well. To our knowledge, porous materials of germanium selenide have not yet been synthesized. Here the structural and electronic properties of GeSe₂ T₂-cristobalite and δ -GeSe₂, two hypothetical neutral supertetrahedral porous phases, are examined.

All the structures were relaxed using an *ab initio* density functional method [21, 22] combined with a conjugate gradient technique method to allow for variations in the shape of the cell and in the atomic positions. The eigenstates were expanded in plane waves, and the simulation is converged using an energy cutoff of 11.4 Ryd. The *k*-point sampling grid depended on the chosen structure. The simulation converged with ten *k*-points for β , 18 *k*-points for HgI₂ type, 20 *k*-points for CdI₂ type, 12 *k*-points for I $\overline{4}$, eight *k*-points for $P\overline{4}$ and 11 *k*-points for T₁-cristobalite, T₂-cristobalite and δ .

We have minimized the energy to give the equilibrium coordinates (in fractional coordinates) for β , CdI₂-type, HgI₂-type, T₁-cristobalite, $I\bar{4}$, $P\bar{4}$, T₂-cristobalite and δ structures. The relaxed parameters for the equilibrium systems are listed in table 2. Experimental results are included for comparison where available. We give theoretical values using both the LDA and the GGA. Inspection shows that the LDA and experimental results are in good agreement overall, while the GGA results are less satisfactory. The lattice parameters for the minimum energy structure are shown in tables 3 and 4. The experimental values for the lattice parameters of β , T₁-cristobalite, CdI₂ type, $I\bar{4}$ and $P\bar{4}$ are also in better agreement with the LDA values than for those of the GGA. In general, we find that the GGA overestimates and the LDA underestimates the lattice parameters. In the next section, we will find that although the lattice parameters using the GGA are not as accurate, the energetics are better reproduced than with the LDA.

3. Energetics and transition properties

We determine the LDA and GGA equation of state for each of our structures. This information is useful in predicting phase transitions under pressure. We fit the energy versus volume curves to a Birch–Murnaghan equation of state [41]. This fit is summarized in table 5 which includes the minimum energy E_0 , equilibrium volume V_0 , bulk modulus K and pressure derivative of

9	5	9	4
~	~	~	

M Fuentes-Cabrera et al

Atom	Site	LDA	GGA	Experiment [17]
β -phase				
Ge(1)	4e(x, y, z)	(0.335, 0.158, 0.230)	(0.315, 0.161, 0.223)	(0.3442, 0.1537, 0.2209)
Ge(2)	4e(x, y, z)	(0.158, 0.144, 0.780)	(0.117, 0.148, 0.771)	(0.1717, 0.1494, 0.7773)
Ge(3)	4e(x, y, z)	(0.828, 0.997, 0.709)	(0.805, 0.995, 0.717)	(0.8414, 0.0008, 0.7017)
Ge(4)	4e(x, y, z)	(0.675, 0.313, 0.286)	(0.629, 0.318, 0.277)	(0.6752, 0.3090, 0.2734)
Se(1)	4e(x, y, z)	(0.675, 0.181, 0.216)	(0.636, 0.192, 0.208)	(0.6757, 0.1770, 0.2095)
Se(2)	4e(x, y, z)	(0.268, 0.040, 0.120)	(0.267, 0.044, 0.131)	(0.2778, 0.0357, 0.1191)
Se(3)	4e(x, y, z)	(0.224, 0.118, 0.417)	(0.222, 0.121, 0.387)	(0.2305, 0.1156, 0.4002)
Se(4)	4e(x, y, z)	(0.134, 0.256, 0.135)	(0.118, 0.256, 0.142)	(0.1647, 0.2559, 0.1326)
Se(5)	4e(x, y, z)	(0.420, 0.326, 0.419)	(0.378, 0.330, 0.391)	(0.4278, 0.3302, 0.4028)
Se(6)	4e(x, y, z)	(0.912, 0.355, 0.427)	(0.877, 0.344, 0.397)	(0.9199, 0.3373, 0.4048)
Se(7)	4e(x, y, z)	(0.664, 0.396, 0.118)	(0.626, 0.406, 0.139)	(0.6751, 0.3926, 0.1145)
Se(8)	4e(x, y, z)	(0.181, 0.482, 0.186)	(0.138, 0.474, 0.192)	(0.1738, 0.4779, 0.1939)
CdI ₂ -type				
Ge(1)	1a(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	_
Se(1)	$2d(\frac{1}{3}, \frac{2}{3}, z)$	(0.333, 0.666, 0.261)	(0.33, 0.66, 0.225)	_
HgI ₂ -type	5 5			
Ge(1)	$2a(\frac{3}{4}, \frac{1}{4}, \frac{3}{4})$	(0.750, 0.250, 0.750)	(0.750, 0.250, 0.750)	_
Se(1)	$2d(\frac{1}{4}, \frac{1}{4}, z)$	(0.250, 0.250, 0.393)	(0.250, 0.250, 0.376)	_
T ₁ -cristobalite				
Ge(1)	4a(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
Se(1)	$8d(x, \frac{1}{4}, \frac{1}{8})$	(0.261, 0.25, 0.125)	(0.238, 0.25, 0.125)	(0.2495, 0.25, 0.125)
I4-phase				
Ge(1)	2a(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
Ge(2)	2c(0, 0.5, 0.25)	(0, 0.5, 0.25)	(0, 0.5, 0.25)	(0, 0.5, 0.25)
Se(1)	8g(x, y, z)	(0.767, 0.249, 0.126)	(0.735, 0.250, 0.125)	(0.7622, 0.2605, 0.1282)
P4-phase				
Ge(1)	1a(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
Ge(2)	1d(0.5, 0.5, 0.5)	(0.5, 0.5, 0.5)	(0.5, 0.5, 0.5)	(0.5, 0.5, 0.5)
Ge(3)	2g(0, 0.5, 0.25)	(0, 0.5, 0.25)	(0, 0.5, 0.25)	(0, 0.5, 0.25)
Se(1)	4h(x, y, z)	(0.267, 0.249, 0.126)	(0.241, 0.249, 0.126)	(0.2739, 0.2340, 0.1280)
Se(2)	4h(x, y, z)	(0.767, 0.750, 0.625)	(0.742, 0.750, 0.625)	(0.7711, 0.7700, 0.6273)
T ₂ -cristobalite				
Ge(1)	16e(x, y, z)	(0.126, 0.101, -0.064)	(0.127, 0.097, -0.063)	_
Se(1)	16e(x, y, z)	(0.038, 0.249, 0.006)	(0.034, 0.245, 0.001)	_
Se(2)	8c(0, 0, z)	(0.000, 0.000, 0.143)	(0.000, 0.000, 0.138)	_
Se(3)	$8d(x, \frac{1}{4}, \frac{1}{8})$	(-0.234, 0.250, 0.125)	(-0.222, 0.250, 0.125)	_
δ-phase	+ 0	. ,	. ,	
Ge(1)	32g(x, y, z)	(0.373, 0.357, 0.062)	(0.375, 0.334, 0.061)	_
Se(1)	$16d(0, \frac{1}{2}, z)$	(0.000, 0.250, 0.013)	(0.000, 0.250, 0.016)	
Se(2)	$16e(r, 0, \frac{1}{4})$	(0.259, 0.000, 0.250)	(0.303, 0.200, 0.010)	_
So(2)	22q(x, y, q)	(0.023), 0.000, 0.250)	(0.042, 0.022, 0.376)	

the bulk modulus K'. The bulk modulus supplies a rough figure concerning the hardness of a material.

The Birch-Murnaghan fits of the LDA and GGA energy versus volume curves are illustrated in figures 2(a) and (b), respectively. The GGA and LDA give quite different predictions for the most stable structure of GeSe₂ as can be seen in figure 2. The LDA predicts

Phase stability and pressure-induced semiconductor to metal transition in crystalline GeSe₂

	a_0 (Å)	b_0 (Å)	c_0 (Å)	β (deg)	Volume (Å ³)
Theory LDA	6.90	16.84	11.30	91.50	1307.40
Theory GGA	7.24	17.53	13.22	91.35	1677.29
Experiment [17]	7.016	16.796	11.831	90.65	1394.00

Table 3. Equilibrium lattice parameters of β -phase GeSe₂.

Table 4. Equilibrium	lattice	parameters of	seven	GeSe ₂	phases
----------------------	---------	---------------	-------	-------------------	--------

	a_0 (Å)	c_0 (Å)	c_0/a_0	Volume (Å ³)
CdI ₂ type				
Theory LDA	3.55	5.78	1.63	63.25
Theory GGA	3.62	6.76	1.87	76.70
Experiment [29]	4.03	5.89	1.46	82.84
HgI2 type				
Theory LDA	3.66	10.67	2.92	142.98
Theory GGA	3.73	12.17	3.26	169.43
Experiment	_	_	_	_
T ₁ -cristobalite				
Theory LDA	5.44	10.20	1.88	301.52
Theory GGA	5.99	9.76	1.63	350.19
Experiment [5]	5.7307	9.691	1.69	318.30
I4-phase				
Theory LDA	5.53	9.88	1.79	301.79
Theory GGA	5.98	9.77	1.64	349.15
Experiment [4]	5.507	9.937	1.80	301.41
P4-phase				
Theory LDA	5.49	10.00	1.82	300.98
Theory GGA	5.90	10.01	1.70	348.36
Experiment [4]	5.339	10.036	1.88	286.07
T ₂ -cristobalite				
Theory LDA	11.06	19.61	1.77	2396.60
Theory GGA	11.51	20.51	1.79	2717.17
Experiment	—	_	_	—
δ -phase				
Theory LDA	10.96	20.28	1.85	2436.03
Theory GGA	12.28	20.07	1.63	3026.52
Experiment	—	—	_	_

that T_1 -cristobalite is the lowest-energy structure, while the GGA identifies β as the lowestenergy structure. Based on the available experiments, β is the most stable [17, 20] among all the structures studied. Therefore, the GGA appears to be correctly describing the energetics of the GeSe₂ system. The failure of the LDA is probably caused by the large variations in the electron density of the layered structures studied (such as β -GeSe₂). The stability of the two hypothetical porous phases of GeSe₂ can be determined by the results presented in figure 2(b) for the GGA. It is seen that the T₂-cristobalite and the δ are indeed very low-energy structures of germanium diselenide. Remarkably, the T₂-cristobalite structure is nearly twice the volume/atom of the other structures, yet is only about 10 meV/atom higher in energy than the β -phase.

Pressure-induced phase transitions in crystalline GeSe₂ can now be investigated. Several experiments have been reported concerning the high-pressure behaviour of crystalline and

Figure 2. Equations of state for the structures studied. (a) Birch–Murnaghan fitting to the LDA energy versus volume curve. (b) Birch–Murnaghan fitting to the GGA energy versus volume curve.

Table 5. Birch–Murnaghan parameters obtained with LDA (GGA). E_0 is the minimum energy, V_0 is the equilibrium volume, K is the bulk modulus and K' is the pressure derivative of the bulk modulus.

System	E_0 (eV/atom)	V_0 (Å ³ /atom)	K (GPa)	K'
β -phase	-4.69 (-4.11)	27.24 (34.94)	13.18 (2.47)	6.90 (13.73)
CdI ₂ type	-4.66 (-3.98)	21.08 (25.57)	28.17 (6.95)	13.80 (6.52)
HgI ₂ type	-4.68 (-4.06)	23.83 (28.24)	34.92 (7.46)	9.16 (17.98)
T ₁ -cristobalite	-4.70 (-4.10)	25.13 (29.18)	23.53 (13.65)	6.56 (6.40)
I4-phase	-4.70 (-4.09)	25.15 (29.10)	23.37 (15.53)	6.37 (4.89)
P4-phase	-4.70 (-4.09)	25.08 (29.03)	25.04 (15.50)	6.33 (4.80)
T ₂ -cristobalite	-4.62 (-4.10)	49.93 (56.61)	3.75 (2.66)	6.36 (9.64)
δ -phase	-4.69 (-4.09)	25.38 (31.53)	17.40 (6.30)	8.12 (6.60)

Table 6. Experimentally determined high-pressure phases of GeSe2.

Phase	Pressure (GPa)	Temperature
I4-phase [4]	2	698 K
T ₁ -cristobalite [29]	1–5	500 °C
T ₁ -cristobalite [5, 29]	3	500 °C
HgI2 type [5, 6, 28]	3	400 °C
CdI ₂ type [29]	5	400 °C
P4-phase [4]	6	773 K

glassy GeSe₂. The two sequences of phase transitions, β -GeSe₂ \rightarrow HgI₂ \rightarrow cristobalite and β -GeSe₂ \rightarrow HgI₂ \rightarrow CdI₂, can be inferred from the high-pressure, high-temperature phase diagram of HT-GeS₂ [28], isostructural with β -GeSe₂ [6]. Table 6 summarizes the available experimental results of the temperature and pressure under which β transforms to $I\bar{4}$, T₁-cristobalite, HgI₂ type, CdI₂ type and $P\bar{4}$. The results concerning the HgI₂-type GeSe₂ are ambiguous in the literature; Grzechnik *et al* [6] noted that the combined results of Shimizu and Kobayashi [28] and Grande *et al* [5] confirm that β transforms to HgI₂-type or cristobalite-like structures at about 3 GPa.

Figure 3. The GGA enthalpy (E + PV) versus pressure (P) for the structures studied. (a) The transitions concerning the six synthesized phases of GeSe₂. (b) The transitions from β -GeSe₂ to the hypothetical structures T₂-cristobalite and δ -GeSe₂.

The theoretical prediction of the pressure-induced phase transitions in crystalline GeSe₂ can be deduced from our *ab initio* results based on the GGA. We use the GGA instead of the LDA since the GGA has produced results more in line with experiment concerning the energetics of different phases. The enthalpy E + PV versus pressure is plotted in figure 3(a) for the six previously synthesized structures and in figure 3(b) for the two hypothetical structures. In figures 3(a) and (b), the phase of lowest enthalpy at a given pressure is the equilibrium phase at that pressure. Phase equilibria are determined by the Gibbs free energy, but we have neglected the entropy term TS in this analysis and use only the enthalpy. From this, we are able to identify the high-pressure phase transitions involving the studied subset of structures. Figure 3(a) shows such a sequence of phase transitions. The sequence is β -GeSe₂ \rightarrow T₁cristobalite $\rightarrow I\bar{4} \rightarrow P\bar{4} \rightarrow HgI_2 \rightarrow CdI_2$ at pressures of 0.52, 0.67, 0.72, 2.30 and 3.56 GPa, respectively. Comparison with the experiments is difficult since not every transition will occur due to activation barriers that must be overcome, which may be much larger than can be supplied thermally. Experimentally, table 6 suggests the sequence β -GeSe₂ $\rightarrow I\bar{4} \rightarrow$ T_1 -cristobalite and/or \rightarrow HgI₂ \rightarrow CdI₂ $\rightarrow P\overline{4}$. This is in qualitatively in agreement with the predicted GGA sequence except for the $P\bar{4}$ phase.

The transitions from β -GeSe₂ to the porous hypothetical structures, T₂-cristobalite and δ -GeSe₂, are also predicted to occur in figure 3(b). Two possible transitions, β -GeSe₂ \rightarrow T₂-cristobalite and β -GeSe₂ $\rightarrow \delta$ -GeSe₂, are observed occurring at -0.10 GPa and at 1.43 GPa, respectively. The results indicate that porous δ -GeSe₂ is a potential high-pressure phase of GeSe₂. From the results of figure 3, we conclude that the hypothetical δ -GeSe₂ phase is a potential intermediate phase between T₁-cristobalite and HgI₂ type. The supertetrahedral framework, T₂-cristobalite, is an extended framework polymorph of GeSe₂ that forms at small negative pressure. Since negative pressure is difficult to produce, other (e.g. templating) means are necessary to produce it. This is similar to semiconductor clathrates, which are easily made and are well studied, but are thermodynamically stable only at negative pressure [42].

4. Electronic properties

The electronic bandstructures of the eight $GeSe_2$ phases studied are shown in figures 4(a)–(h). The bandstructure calculations are based on the LDA-optimized structures since the LDA produces better results than the GGA when compared with available experimental structures.

Figure 4. Electronic bandstructures of (a) β -GeSe₂, (b) $P\bar{4}$, (c) $I\bar{4}$, (d) T₁-cristobalite, (e) HgI₂-type, (f) CdI₂-type, (g) T₂-cristobalite and (h) δ -GeSe₂. The bandstructure calculations are based on the LDA-optimized structures of the phases studied.

The electronic properties from their bandstructures of the six experimental observed phases of GeSe₂ can be summarized as follows. β -GeSe₂ (figure 4(a)) and $P\bar{4}$ -GeSe₂ (figure 4(b)) are semiconducting with direct bandgaps at the Γ point of 1.612 and 0.639 eV, respectively. $I\bar{4}$ -GeSe₂ (figure 4(c)) and T₁-cristobalite (figure 4(d)) are semiconducting with indirect bandgaps of 0.928 and 0.942 eV, respectively. In both $I\bar{4}$ and T₁-cristobalite, the top of the valence band is at Γ and the bottom of the conduction band is at Z or X (within the accuracy of the method, Z and X points are practically degenerate). Both high-pressure phases of the HgI₂-type (figure 4(e)) and the CdI₂-type GeSe₂ (figure 4(f)) are found to be metallic.

The fact that CdI₂-type crystalline GeSe₂ is a metallic phase is an exciting finding of this work. The semiconductor-metal transition occurring at high pressure in the germanium selenide family has been an attractive and open topic since Prasad *et al* [10] first reported their experimental finding. The important effect of this is that the properties of Ge–Se glass could be permanently changed by applying pressure. It has been found that GeSe₂ crystallizes in the CdI₂-type phase at around 7 GPa and it was suggested that this phase is indeed metallic [5, 29]. This phase may account for the semiconductor-metal transition. Our electronic structures of GeSe₂ confirm for the first time that the CdI₂-type phase is metallic.

The electronic properties of two hypothetical neutral supertetrahedral porous phases of GeSe₂ are also examined. The bandstructure of T₂-cristobalite, figure 4(g), shows that T₂-cristobalite is semiconducting with a direct bandgap at the Γ point of 1.691 eV. δ -GeSe₂ (figure 4(h)) is an indirect bandgap semiconductor with an indirect bandgap of 1.04 eV. The bandstructure of δ -GeSe₂ shows that the top of the valence band is along Γ -X, while the bottom of the conduction band is at Γ . Further investigation of the charge density distribution showed that there is no significant probability density residing in the pore of either δ or T₂-cristobalite. This means that no electron states are trapped in the pores and therefore we conclude that neither δ nor T₂-cristobalite is an antidot semiconductor. This finding agrees with the result found on neutral supertetrahedral solid In₄Sn₆S₁₈ [35].

5. Conclusions

We have studied theoretically the structural and electronic properties of the crystalline GeSe₂. The eight phases of GeSe₂, six experimentally available and two hypothetical, were investigated under the LDA and the GGA. The correct energetic properties of GeSe₂, as well as the qualitative trend of phase transitions, are obtained with the GGA when compared with experiments. β -GeSe₂ is the lowest-energy phase among all the structures studied. The two hypothetical porous phases, T₂-cristobalite and δ -GeSe₂, are found to be very low-energy phases of the germanium diselenide family. The high-pressure CdI₂-type phase is metallic, which is in line with experimental results that observe a semiconductor to metal transition in GeSe₂ glasses speculated to be due to the CdI₂-type phase. Though our results can be used as evidence to support that speculation, we note that (a) the HgI₂ type is also metallic, and (b) we find the CdI₂ type to occur at 3.56 GPa, while HgI₂-type GeSe₂ is predicted to occur at 2.30 GPa. Potentially both CdI₂ type and HgI₂ type play a role in the transition.

Acknowledgment

This work is supported by NSF (DMR-99-86706).

References

- [1] Nakaoka T, Wang Y, Murase K, Matsuda O and Inoue K 2000 Phys. Rev. B 61 15 569 and references therein
- Boolchand P (ed) 2000 Insulating and Semiconducting Glasses (Singapore: World Scientific) p 191 and references therein

- [3] Fjellåg H, Kongshaug K O and Stølen S 2001 J. Chem. Soc. Dalton 7 1043
- [4] Grzechnik A, Stølen S, Bakken E, Grande T and Mezouar M 2000 J. Solid State Chem. 150 121
- [5] Grande T, Ishii M, Akaishi M, Aasland S, Fjellåg H and Stølen S 1999 J. Solid State Chem. 145 167
- [6] Grzechnik A, Grande T and Stølen S 1998 J. Solid State Chem. 141 248
- [7] Popović Z V, Jaksić Z, Raptis Y S and Anastassakis E 1998 Phys. Rev. B 57 3418
- [8] Ojima T and Adachi S 1997 J. Appl. Phys. 82 3105
- [9] Kandil K M, Kotkata M F, Theye M L, Gheorghiu A, Senemaud C and Dixmier J 1995 Phys. Rev. B 51 17 565
- [10] Prasad M V N, Asokan S, Parthasarathy G, Titus S S K and Gopal E S R 1993 Phys. Chem. Glasses 34 199
- [11] Durandurdu M and Drabold D A 2002 *Phys. Rev.* B 65 104208
 Cobb M, Drabold D A and Cappelletti R L 1996 *Phys. Rev.* B 54 162
- [12] Cjua-Hua L, Pashinkin A S and Novoselova A V 1962 *Zh. Neorg. Khim.* **7** 2159
- [13] Novoselova A V, Zlomanov Yu P, Karbanov S G, Matveyev O V and Gaskov A M 1972 Prog. Solid State Chem. 6/7 85
- [14] Dittmar G and Schäfer H 1975 Acta Crystallogr. B 31 2060
- [15] Burgeat J, Le Roux G and Brenac A 1975 J. Appl. Crystallogr. 8 325
- [16] Dittmar G and Schäfer H 1976 Acta Crystallogr. B 32 1188
- [17] Dittmar G and Schäfer H 1976 Acta Crystallogr. B 32 2726
- [18] Godlewski E and laruelle P 1977 Appl. Crystallogr. 10 202
- [19] Bletskan D I, Gerasimenko V S and Sichka M Yu 1979 Kristallographiya 24 83
- [20] Stølen S, Johnsen H B, Bøe C S, Grande T and Karlsen O B 1999 J. Phase Equilib. 20 17
- [21] Kresse G and Furthmüller J 1996 *Comput. Mater. Sci.* 6 15
 [22] Kresse G and Furthmüller J 1996 *Phys. Rev.* B 55 11 169
- Kresse G and Hafner J 1993 *Phys. Rev.* B **47** 558 [23] Vanderbilt D 1990 *Phys. Rev.* B **41** 7892
- [24] Monkhorst H J and Pack J D 1976 *Phys. Rev.* B 13 5189
- [25] Ceperly D M and Alder B J 1980 *Phys. Rev. Lett.* **45** 566
- [25] Ceperty D M and Ander D J 1960 1 Mys. Rev. Ecu. 45 5
- [26] Perdew J P and Zunger A 1981 *Phys. Rev.* B **23** 5048
- [27] Perdew J P 1991 Electron Structure of Solids ed P Ziesche and H Escrig (Berlin: Akademie)
- [28] Shimizu Y and Kobayashi T 1983 Mem. Inst. Sci. Technol. Meiji Univ. 21 1
- [29] Shimada M and Dachille F 1977 Inorg. Chem. 16 2094
- [30] Wells A F (ed) 1984 Structural Inorganic Chemistry 5th edn (Oxford: Clarendon) p 194
- [31] Bondars B Y, Vitola A A, Miller T N, Ozolinsh G V and Cila Z Y 1977 Latv. PSR Zinat. Akad. Vestis Khim. Ser. 632
- [32] Boukbir L, Marchand R, Laurent Y, Bacher P and Roult G 1989 Ann. Chim. 14 475
- [33] Xun J, Moxom J, Overbury S H and White C W 2002 Phys. Rev. Lett. 88 175502-1
- [34] Li H, Eddaoudi M, Laine A, O'Keeffe M and Yaghi O M 1999 J. Am. Chem. Soc. 121 6096
- [35] Fuentes-Cabrera M, Wang H, Daniel B and Sankey O F 2002 Phys. Rev. B 66 045109
- [36] Stupp S I and Braun P V 1997 Science 277 1242
- [37] Ensslin K and Petroff P M 1990 Phys. Rev. B 41 12 307
- [38] MacLachlan M J, Coombs N and Ozin G A 1999 Nature 397 681
- [39] MacLachlan M J, Petrov S, Bedard R L, Manners I and Ozin G A 1998 Angew. Chem., Int. Edn Engl. 37 2076
 [40] O'Keeffe M, Eddaoudi M, Li H L, Reineke T and Yaghi O M 2000 J. Solid State Chem. 152 3 and references
- therein
- [41] Birch F 1952 J. Geophys. Res. 57 227
- [42] Ramachandran G K, McMillan R F, Deb S K, Somayazulu S, Gryko J, Dong J and Sankey O F 2000 J. Phys.: Condens. Matter 12 4013